Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Comp Med ; 74(1): 3-11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38532262

RESUMO

L-368,899 is a selective small-molecule oxytocin receptor (OXTR) antagonist originally developed in the 1990s to prevent preterm labor. Although its utility for that purpose was limited, L-368,899 is now one of the most commonly used drugs in animal research for the selective blockade of neural OXTR after peripheral delivery. A growing number of rodent and primate studies have used L-368,899 to evaluate whether certain behaviors are oxytocin dependent. These studies have improved our understanding of oxytocin's function in the brains of rodents and monkeys, but very little work has been done in other mammals, and only a single paper in macaques has provided any evidence that L-368,899 can be detected in the CNS after peripheral delivery. The current study sought to extend those findings in a novel species: coyotes ( Canis latrans ). Coyotes are ubiquitous North American canids that form long-term monogamous pair-bonds. Although monogamy is rare in rodents and primates, all wild canid species studied to date exhibit social monogamy. Coyotes are therefore an excellent model organism for the study of oxytocin and social bonds. Our goal was to determine whether L-368,899 is a viable candidate for future use in behavioral studies in coyotes. We used captive coyotes at the USDA National Wildlife Research Center's Predator Research Facility to evaluate the pharmacokinetics of L-368,899 in blood and CSF during a 90-min time course after intramuscular injection. We then characterized the binding affinity and selectivity of L-368,899 to coyote OXTR and the structurally similar vasopressin 1a receptor. We found that L-368,899 peaked in CSF at 15 to 30 min after intramuscular injection and slowly accumulated in blood. L-368,899 was 40 times more selective for OXTR than vasopressin 1a receptors and bound to the coyote OXTR with an affinity of 12 nM. These features of L-368,899 support its utility in future studies to probe the oxytocin system of coyotes.


Assuntos
Canfanos , Coiotes , Piperazinas , Receptores de Ocitocina , Animais , Coiotes/fisiologia , Ocitocina , Primatas , Vasopressinas
2.
Vet Parasitol Reg Stud Reports ; 48: 100982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316509

RESUMO

Echinococcus multilocularis, a cestode with zoonotic potential, is now known to have a high prevalence in wild canid definitive hosts of southern Ontario. The distribution of E. multilocularis across this region in red foxes (Vulpes vulpes) and coyotes (Canis latrans) is widespread yet heterogenous. In contrast, confirmed diagnoses of E. multilocularis in wild free-ranging intermediate hosts within Ontario are currently limited to a single eastern chipmunk (Tamias striatus). These findings prompted ongoing surveillance efforts in intermediate host species, primarily rodents. Our report describes the results of passive surveillance through wildlife carcass submissions to the Canadian Wildlife Health Cooperative (CWHC) and targeted active sampling of small mammal species from 2018 to 2023; a second and third eastern chipmunk were found to be infected with E. multilocularis. However, these were the only occurrences from surveillance efforts which collectively totaled 510 rodents and other small mammals. Continued surveillance for E. multilocularis in intermediate hosts is of high importance in light of the recent emergence of this parasite in Ontario.


Assuntos
Coiotes , Equinococose , Echinococcus multilocularis , Doenças dos Roedores , Animais , Ontário/epidemiologia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/diagnóstico , Animais Selvagens , Sciuridae , Raposas/parasitologia , Doenças dos Roedores/epidemiologia
3.
Sci Rep ; 14(1): 3804, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360908

RESUMO

Chronic wasting disease (CWD) is a highly contagious, fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting wild and captive cervids. Although experimental feeding studies have demonstrated prions in feces of crows (Corvus brachyrhynchos), coyotes (Canis latrans), and cougars (Puma concolor), the role of scavengers and predators in CWD epidemiology remains poorly understood. Here we applied the real-time quaking-induced conversion (RT-QuIC) assay to detect PrPCWD in feces from cervid consumers, to advance surveillance approaches, which could be used to improve disease research and adaptive management of CWD. We assessed recovery and detection of PrPCWD by experimental spiking of PrPCWD into carnivore feces from 9 species sourced from CWD-free populations or captive facilities. We then applied this technique to detect PrPCWD from feces of predators and scavengers in free-ranging populations. Our results demonstrate that spiked PrPCWD is detectable from feces of free-ranging mammalian and avian carnivores using RT-QuIC. Results show that PrPCWD acquired in natural settings is detectable in feces from free-ranging carnivores, and that PrPCWD rates of detection in carnivore feces reflect relative prevalence estimates observed in the corresponding cervid populations. This study adapts an important diagnostic tool for CWD, allowing investigation of the epidemiology of CWD at the community-level.


Assuntos
Coiotes , Cervos , Doenças Neurodegenerativas , Príons , Doença de Emaciação Crônica , Animais , Fezes , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia
4.
J Anim Ecol ; 93(4): 447-459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348546

RESUMO

Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.


Assuntos
Coiotes , Cervos , Animais , Coelhos , Cervos/fisiologia , Coiotes/fisiologia , Ecossistema , Comportamento Predatório/fisiologia , Equidae
5.
PLoS One ; 19(1): e0288477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206932

RESUMO

Many species of wildlife alter their daily activity patterns in response to co-occurring species as well as the surrounding environment. Often smaller or subordinate species alter their activity patterns to avoid being active at the same time as larger, dominant species to avoid agonistic interactions. Human development can complicate interspecies interactions, as not all wildlife respond to human activity in the same manner. While some species may change the timing of their activity to avoid being active when humans are, others may be unaffected or may benefit from being active at the same time as humans to reduce predation risk or competition. To further explore these patterns, we used data from a coordinated national camera-trapping program (Snapshot USA) to explore how the activity patterns and temporal activity overlap of a suite of seven widely co-occurring mammalian mesocarnivores varied along a gradient of human development. Our focal species ranged in size from the large and often dominant coyote (Canis latrans) to the much smaller and subordinate Virginia opossum (Didelphis virginiana). Some species changed their activity based on surrounding human development. Coyotes were most active at night in areas of high and medium human development. Red fox (Vulpes vulpes) were more active at dusk in areas of high development relative to areas of low or medium development. However, because most species were primarily nocturnal regardless of human development, temporal activity overlap was high between all species. Only opossum and raccoon (Procyon lotor) showed changes in activity overlap with high overlap in areas of low development compared to areas of moderate development. Although we found that coyotes and red fox altered their activity patterns in response to human development, our results showed that competitive and predatory pressures between these seven widespread generalist species were insufficient to cause them to substantially alter their activity patterns.


Assuntos
Coiotes , Raposas , Animais , Humanos , Raposas/fisiologia , Coiotes/fisiologia , Animais Selvagens , Gambás , Comportamento Predatório , Guaxinins
6.
J Wildl Dis ; 60(1): 14-25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889940

RESUMO

Wildlife diseases have implications for ecology, conservation, human health, and health of domestic animals. They may impact wildlife health and population dynamics. Exposure rates of coyotes (Canis latrans) to pathogens such as Yersinia pestis, the cause of plague, may reflect prevalence rates in both rodent prey and human populations. We captured coyotes in north-central New Mexico during 2005-2008 and collected blood samples for serologic surveys. We tested for antibodies against canine distemper virus (CDV, Canine morbillivirus), canine parvovirus (CPV, Carnivore protoparvovirus), plague, tularemia (Francisella tularensis), and for canine heartworm (Dirofilaria immitis) antigen. Serum biochemistry variables that fell outside reference ranges were probably related to capture stress. We detected antibodies to parvovirus in 32/32 samples (100%), and to Y. pestis in 26/31 (84%). More than half 19/32 (59%) had antibodies against CDV, and 5/31 (39%) had antibodies against F. tularensis. We did not detect any heartworm antigens (n = 9). Pathogen prevalence was similar between sexes and among the three coyote packs in the study area. Parvovirus exposure appeared to happen early in life, and prevalence of antibodies against CDV increased with increasing age class. Exposure to Y. pestis and F. tularensis occurred across all age classes. The high coyote seroprevalence rates observed for CPV, Y. pestis, and CDV may indicate high prevalence in sympatric vertebrate populations, with implications for regional wildlife conservation as well as risk to humans via zoonotic transmission.


Assuntos
Coiotes , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Peste , Tularemia , Yersinia pestis , Animais , Cães , Humanos , Peste/epidemiologia , Peste/veterinária , Tularemia/epidemiologia , Tularemia/veterinária , Cinomose/epidemiologia , Estudos Soroepidemiológicos , New Mexico , Anticorpos Antivirais , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Animais Selvagens
7.
J Wildl Dis ; 60(1): 211-215, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972642

RESUMO

Coyotes (Canis latrans) rapidly expanded across North America during the 20th century and in 1987 colonized insular Newfoundland, Canada. Their arrival brought the potential for new predator-prey interactions and the potential for transmission of parasites to naïve populations. Trichinella spp. and Echinococcus spp. are zoonotic parasites not previously reported from the island of Newfoundland, Canada. Muscle samples (diaphragm and tongue) from 153 coyotes and feces from 35/153 coyotes were collected. Larvae of Trichinella spp. were recovered by muscle digestion from 6/153 coyotes (3.9%) and identified using multiplex PCR and Sanger sequencing as T. nativa. Fecal samples were screened for DNA of Echinococcus spp. using qPCR, and intestines from positive animals were examined for adult cestodes. No fecal samples were positive for DNA of E. multilocularis, and 2/35 (5.7%) samples were positive for E. canadensis, of which one was successfully genotyped as the G10 cervid strain. Echinococcus canadensis has not previously been reported on the island of Newfoundland, historically the only region of Canada where Echinococcus spp. was not known to occur. No species of Trichinella have previously been reported on the island. Both parasites are zoonotic, and hunters, trappers, dog owners, and the general public should be aware of these new risks for public health.


Assuntos
Coiotes , Echinococcus , Trichinella , Animais , Cães , Coiotes/parasitologia , Terra Nova e Labrador/epidemiologia , Canadá , DNA
8.
J Child Psychol Psychiatry ; 65(3): 365-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984973

RESUMO

Paradoxically, resilience carries with it the risk of disorder. When understood systemically, this should come as no surprise. All complex systems demonstrate this same propensity for both positive and negative feedback loops. A thriving ecosystem eventually succumbs to its own dominance over its environment, using up available resources until its survival is threatened and its population declines (e.g. predators like coyotes in a national park where hunting is prohibited) (Ward et al., 2018). For this reason, systems that demonstrate powerful resistance to threat are, paradoxically, often made vulnerable by their success.


Assuntos
Coiotes , Resiliência Psicológica , Animais , Criança , Humanos , Ecossistema , Desenvolvimento Infantil
9.
Arch Virol ; 169(1): 12, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38151635

RESUMO

Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.


Assuntos
Coiotes , DNA Circular , Animais , Cães , Arizona , Vírus de DNA/genética
10.
Ecohealth ; 20(4): 441-452, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109036

RESUMO

Allocoprophagy, in which animals feed on the feces of other individuals or species, has been little studied in vertebrates, despite its relevance to parasite transmission. These relationships may be especially important in cities, where animal density, disease incidence, and spatial overlap of humans and wildlife increase. Our goal was to document the incidence and predictors of coprophagy by black-billed magpies (Pica hudsonia) at coyote (Canis latrans) scats in Edmonton, Canada. We detected scats by following coyote trails and recorded whether coprophagy had occurred. We used multiple logistic regression to determine the top contextual and environmental predictors of coprophagy. Of 668 coyote scats, 37.3% had apparently been fed on. Coprophagy was more likely in winter and when scats were not fresh and did not contain vegetation or garbage. Environmental predictors of coprophagy included proximity to other coyote scats and playgrounds, distance from water and maintained trails, abundant natural land cover, and proximity to encampments of people experiencing homelessness. Our results reveal that magpies frequently access coyote scat and often do so near human-use areas. In Edmonton, where > 50% of coyotes are infected with a zoonotic tapeworm, coprophagy likely causes magpies to transport parasites with implications for zoonotic disease risk.


Assuntos
Cestoides , Coiotes , Parasitos , Animais , Humanos , Coiotes/parasitologia , Animais Selvagens/parasitologia , Zoonoses/epidemiologia , Cidades
11.
Ecohealth ; 20(3): 286-299, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38015408

RESUMO

Ecologies of zoonotic vector-borne diseases may shift with climate and land use change. As many urban-adapted mammals can host ectoparasites and pathogens of human and animal health concern, our goal was to compare patterns of arthropod-borne disease among medium-sized mammals across gradients of rural to urban landscapes in multiple regions of California. DNA of Anaplasma phagocytophilum was found in 1-5% of raccoons, coyotes, and San Joaquin kit foxes; Borrelia burgdorferi in one coyote, rickettsiae in two desert kit foxes, and Yersinia pestis in two coyotes. There was serological evidence of rickettsiae in 14-37% of coyotes, Virginia opossums, and foxes; and A. phagocytophilum in 6-40% of coyotes, raccoons, Virginia opossums, and foxes. Of six flea species, one Ctenocephalides felis from a raccoon was positive for Y. pestis, and Ct. felis and Pulex simulans fleas tested positive for Rickettsia felis and R. senegalensis. A Dermacentor similis tick off a San Joaquin kit fox was PCR-positive for A. phagocytophilum. There were three statistically significant risk factors: risk of A. phagocytophilum PCR-positivity was threefold greater in fall vs the other three seasons; hosts adjacent to urban areas had sevenfold increased A. phagocytophilum seropositivity compared with urban and rural areas; and there was a significant spatial cluster of rickettsiae within greater Los Angeles. Animals in areas where urban and rural habitats interconnect can serve as sentinels during times of change in disease risk.


Assuntos
Coiotes , Rickettsia , Sifonápteros , Doenças Transmitidas por Vetores , Animais , Humanos , Raposas , Mudança Climática , Guaxinins , Gambás
12.
Proc Biol Sci ; 290(2009): 20231812, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876200

RESUMO

Sensory integration theory predicts natural selection should favour adaptive responses of animals to multiple forms of information, yet empirical tests of this prediction are rare, particularly in free-living mammals. Studying indirect predator cues offers a salient opportunity to inquire about multimodal risk assessment and its potentially interactive effects on prey responses. Here we exposed California ground squirrels from two study sites (that differ in human and domestic dog activity) to acoustic and/or olfactory predator cues to reveal divergent patterns of signal dominance. Olfactory information most strongly predicted space use within the testing arena. That is, individuals, especially those at the human-impacted site, avoided coyote urine, a danger cue that may communicate the proximity of a coyote. By contrast, subjects allocated less time to risk-sensitive behaviours when exposed to acoustic cues. Specifically, although individuals were consistent in their behavioural responses across trials, 'quiet coyotes' (urine without calls) significantly increased the behavioural reactivity of prey, likely because coyotes rarely vocalize when hunting. More broadly, our findings highlight the need to consider the evolution of integrated fear responses and contribute to an emerging understanding of how animals integrate multiple forms of information to trade off between danger and safety cues in a changing world.


Assuntos
Coiotes , Comportamento Predatório , Humanos , Animais , Cães , Comportamento Predatório/fisiologia , Sinais (Psicologia) , Olfato , Medo , Sciuridae
13.
J Wildl Dis ; 59(4): 722-733, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846906

RESUMO

Rocky Mountain spotted fever (RMSF), caused by the bacterium Rickettsia rickettsii, is a re-emerging tick-borne zoonosis in North America, with hundreds of human fatalities in multiple outbreaks in northern Mexico and the southwestern US in the past few decades. Free-roaming dogs are key because they are reservoirs for the pathogen and the main hosts of the brown dog tick (Rhipicephalus sanguineus), which vectors RMSF in this region. Because coyotes (Canis latrans) can be infected with R. rickettsii and infested with Rh. sanguineus, we hypothesized that space sharing among dogs and coyotes could enhance disease risks. In summer 2021, we captured and sampled 11 coyotes at two sites in Baja California, Mexico, near population centers with human cases of RMSF, and fitted seven individuals with GPS logging collars. We also tested tissue samples, sera, and ectoparasites for DNA of R. rickettsii with PCR and used serology to detect antibodies to R. rickettsii. Finally, we deployed an array of cameras to document dog-coyote interactions. Mean home range size was 40.37 km2. Both GPS and camera data showed considerable home range overlap both between individual coyotes and between coyotes and dogs. Coyotes were active in areas where dogs occur including the domestic interface surrounding human settlements. Although none of our samples were positive for R. rickettsii on PCR, 72.7% (8/11) of the samples were seropositive with titers ≥64. Our data confirm shared space use and risk of shared parasites and disease between coyotes and dogs.


Assuntos
Coiotes , Doenças do Cão , Rhipicephalus sanguineus , Infecções por Rickettsia , Febre Maculosa das Montanhas Rochosas , Cães , Humanos , Animais , Febre Maculosa das Montanhas Rochosas/epidemiologia , Febre Maculosa das Montanhas Rochosas/veterinária , México/epidemiologia , Rhipicephalus sanguineus/microbiologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Infecções por Rickettsia/veterinária , Anticorpos Antibacterianos
14.
Parasit Vectors ; 16(1): 372, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858216

RESUMO

BACKGROUND: Hepatozoon spp. are apicomplexan parasites known to cause musculoskeletal disease in a variety of animals. Two species are known to infect wild and domestic canids in the US: Hepatozoon canis and H. americanum. METHODS: In this study, blood, heart, and/or spleen samples were collected from 278 wild canids (180 coyotes, 93 red foxes, and 5 gray foxes) in the eastern US and tested via PCR for Hepatozoon. Histology slides of heart and skeletal muscle were assessed for Hepatozoon cysts and associated inflammation when fresh tissue was available (n = 96). RESULTS: Hepatozoon spp. were found in 24.2% (59/278) of individuals, with Hepatozoon canis in 14.0% (34/278) and H. americanum in 10.7% (26/278). One coyote was positive for both H. canis and H. americanum. Foxes were more likely to be positive for H. canis than coyotes (23% and 7% respectively, P = 0.0008), while only coyotes were positive for H. americanum. Of the eight sampled states, H. canis was present in six (Louisiana, North Carolina, Pennsylvania, South Carolina, Tennessee, and Virginia) while H. americanum was found in two southern states (South Carolina and Louisiana). Infection status was positively correlated with myositis and myocarditis, and heart or muscle cysts were found in 83% (5/6) of H. americanum-positive coyotes. CONCLUSION: This survey showed a moderate prevalence of H. canis and H. americanum in states where the parasite was previously unrecorded including South Carolina and Pennsylvania.


Assuntos
Coccidiose , Coiotes , Cistos , Eucoccidiida , Animais , Estados Unidos/epidemiologia , Raposas/parasitologia , Coiotes/parasitologia , Coccidiose/epidemiologia , Coccidiose/veterinária , Coccidiose/parasitologia , Eucoccidiida/genética , Pennsylvania
15.
PLoS One ; 18(10): e0293270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878654

RESUMO

Coyotes (Canis latrans) colonized the eastern United States over the last century and formed a 3-species predator guild with bobcats (Lynx rufus) and gray foxes (Urocyon cinereoargenteus) across much of the southeastern United States. Diets among the three species vary along with respective impacts on game species such as white-tailed deer (Odocoileus virginianus) and wild turkeys (Meleagris gallopavo). To determine predation impacts on vertebrate prey and dietary overlap in consumption of prey items, we assessed diets of coyote, bobcat, and gray fox during spring, coinciding with white-tailed deer fawning and wild turkey nesting and brood rearing. We sampled across three sites along the Savannah River in South Carolina from mid-May through mid-June of 2020-2021. We collected 180 scat samples along 295.9 kilometers (71.1-122.4 km/site) of unpaved secondary roads and used DNA metabarcoding to determine vertebrate diet items. We identified predator species of scat using DNA metabarcoding and species-specific mtDNA fragment analysis (153 were coyote, 20 bobcat, and seven gray fox). Overall, we found evidence that two species, coyote and bobcat, consumed deer while all three consumed turkeys. Frequency of deer in the diet varied across sites for coyotes from 62-86% and wild turkey was present with a frequency of occurrence of 9% for coyotes, 5% for bobcats, and 14% for gray fox. Vertebrate diet specialization was evident across predator species with high frequency of deer in coyote diets, rabbits and small mammals in bobcat diets, and herpetofauna in gray fox diets. During deer fawning and wild turkey nesting and brood rearing, dietary overlap appears to be mediated by disparate selection of prey items, which reduced competition among coyotes, bobcats, and gray foxes. Use of DNA metabarcoding may augment our understanding of dietary preferences within this predator guild by providing increased resolution of diet composition among important game species.


Assuntos
Coiotes , Cervos , Lynx , Animais , Coelhos , Raposas , Sudeste dos Estados Unidos
16.
Sci Rep ; 13(1): 14683, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674004

RESUMO

Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.


Assuntos
COVID-19 , Coiotes , Cervos , Lynx , Lontras , Animais , Animais Selvagens , COVID-19/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Vermont/epidemiologia , Raposas
17.
Sci Rep ; 13(1): 14368, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658075

RESUMO

Leptospirosis, the most widespread zoonotic disease in the world, is broadly understudied in multi-host wildlife systems. Knowledge gaps regarding Leptospira circulation in wildlife, particularly in densely populated areas, contribute to frequent misdiagnoses in humans and domestic animals. We assessed Leptospira prevalence levels and risk factors in five target wildlife species across the greater Los Angeles region: striped skunks (Mephitis mephitis), raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis virginiana), and fox squirrels (Sciurus niger). We sampled more than 960 individual animals, including over 700 from target species in the greater Los Angeles region, and an additional 266 sampled opportunistically from other California regions and species. In the five target species seroprevalences ranged from 5 to 60%, and infection prevalences ranged from 0.8 to 15.2% in all except fox squirrels (0%). Leptospira phylogenomics and patterns of serologic reactivity suggest that mainland terrestrial wildlife, particularly mesocarnivores, could be the source of repeated observed introductions of Leptospira into local marine and island ecosystems. Overall, we found evidence of widespread Leptospira exposure in wildlife across Los Angeles and surrounding regions. This indicates exposure risk for humans and domestic animals and highlights that this pathogen can circulate endemically in many wildlife species even in densely populated urban areas.


Assuntos
Coiotes , Didelphis , Geraniaceae , Leptospira , Animais , Humanos , Leptospira/genética , Animais Selvagens , Ecossistema , Mephitidae , Los Angeles , Animais Domésticos , Guaxinins , Sciuridae
18.
PLoS One ; 18(8): e0288449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651350

RESUMO

In the Southern Appalachian region of the United States, harvest data has indicated the occurrence of low deer densities while exposing a trend of declining white-tailed deer (Odocoileus virginianus) populations over the past several decades in northern Georgia. A triumvirate of increasing fawn predator populations reside in the Southern Appalachian Mountains including coyotes (Canis latrans), black bears (Ursus americanus) and bobcats (Lynx rufus). This region is also characterized by a homogenous landscape composed of mature forests and sparse understory vegetation, likely lacking adequate cover to offer fawns refugia from predators. Our objectives were to estimate survival and cause-specific mortality rates of fawns while assessing a possible link between mortality risk, intrinsic fawn characteristics (i.e., birth mass, Julian birth date, sibling status), and landscape features within fawn usage areas. During 2018-2020, we radio-collared 71 fawns within the Chattahoochee National Forest of northern Georgia, USA and monitored survival to 12 weeks of age. We observed low fawn survival (cumulative = 0.157, 95% CI = 0.091-0.273; vaginal implant transmitter = 0.196, 95% CI = 0.096-0.403) with predation as the leading cause of all known mortalities (45 of 55 mortalities; 82%) due primarily to coyotes (n = 22), black bears (n = 12), and bobcats (n = 7). Relationships between landscape features and fawn predation risk were minimal with only one informative covariate. Increasing amounts of early successional land cover within fawn usage areas decreased fawn mortality risk within the first 20 days of life, but elevated mortality risk thereafter. All fawns with any amount of early successional land cover in their usage areas died of predation (n = 13) at various time intervals, suggesting limited areas of potential fawning cover may be targeted by predators. However, fawn predation risk seemed to be high regardless of landscape covariates due to the limited number of surviving fawns. Coyote-caused mortality occurred over a longer period at a consistently higher magnitude than all other forms of mortality, indicating possible delayed prey-switching behavior and coyote predation as an important factor of fawn survival. The low recruitment of fawns influenced by high predation rates and homogenous habitat conditions is likely the cause of deer population declines in the region.


Assuntos
Coiotes , Cervos , Gafanhotos , Lynx , Ursidae , Animais , Feminino , Comportamento Predatório , Região dos Apalaches
19.
J Parasitol ; 109(4): 357-361, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527278

RESUMO

Echinococcus multilocularis is a zoonotic cestode that can infect wildlife, domestic animals, and humans. In humans, infection with the larval stage of the parasite causes the disease alveolar echinococcosis, which can be fatal if left untreated. Surveillance for the parasite in New York State occurred during the 2021-2022 coyote (Canis latrans) hunting season. Fecal samples and the gastrointestinal tracts (GIT) from 43 coyote carcasses were collected from hunters and trappers across 8 counties. Fecal samples were screened for E. multilocularis DNA using a multiplex PCR. Three samples tested positive for E. multilocularis DNA. Subsequently, adult cestodes were collected from GIT samples using the sedimentation, filtration, and counting technique. Phylogenetic analysis of DNA sequences from the nad2 and cob genes from individual worms indicated these New York sequences cluster with E. multilocularis sequences from Europe. This is the first report of adult E. multilocularis cestodes in New York State, as well as the first detection of the European haplotype of E. multilocularis in wildlife in the northeastern United States.


Assuntos
Coiotes , Echinococcus multilocularis , Animais , Adulto , Humanos , Echinococcus multilocularis/genética , Coiotes/parasitologia , New York/epidemiologia , Filogenia , Animais Selvagens/parasitologia , DNA
20.
PLoS One ; 18(8): e0290755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647321

RESUMO

Urban coyotes (Canis latrans) in North America increasingly exhibit a high prevalence of Echinococcus multilocularis, a cestode of recent and rising public health concern that uses rodents as intermediate hosts and canids as definitive hosts. However, little is known about the factors that drive the high urban prevalence of this parasite. We hypothesized that the diet of urban coyotes may contribute to their higher E. multilocularis infection prevalence via either (a) greater exposure to the parasite from increased rodent consumption or (b) increased susceptibility to infection due to the negative health effects of consuming anthropogenic food. We tested these hypotheses by comparing the presence and intensity of E. multilocularis infection to physiological data (age, sex, body condition, and spleen mass), short-term diet (stomach contents), and long-term diet (δ13C and δ15N stable isotopes) in 112 coyote carcasses collected for reasons other than this study from Edmonton, Alberta and the surrounding area. Overall, the best predictor of infection status in this population was young age, where the likelihood of infection decreased with age in rural coyotes but not urban ones. Neither short- nor long-term measures of diet could predict infection across our entire sample, but we found support for our initial hypotheses in young, urban coyotes: both rodent and anthropogenic food consumption effectively predicted E. multilocularis infection in this population. The effects of these predictors were more variable in rural coyotes and older coyotes. We suggest that limiting coyote access to areas in which anthropogenic food and rodent habitat overlap (e.g., compost piles or garbage sites) may effectively reduce the risk of infection, deposition, and transmission of this emerging zoonotic parasite in urban areas.


Assuntos
Coiotes , Equinococose , Echinococcus multilocularis , Comportamento Alimentar , Zoonoses , Animais , Coiotes/parasitologia , Equinococose/epidemiologia , Equinococose/transmissão , Equinococose/veterinária , Fatores Etários , Cidades , Prevalência , Zoonoses/epidemiologia , Zoonoses/parasitologia , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...